Package 'splineCox'

Title: A Two-Stage Estimation Approach to Cox Regression Using M-Spline Function
Description: Implements a two-stage estimation approach for Cox regression using five-parameter M-spline functions to model the baseline hazard. It allows for flexible hazard shapes and model selection based on log-likelihood criteria.
Authors: Ren Teranishi [aut, cre]
Maintainer: Ren Teranishi <[email protected]>
License: GPL (>= 3)
Version: 0.0.1
Built: 2024-12-19 05:40:03 UTC
Source: https://github.com/ren1227/splinecox

Help Index


Fitting the five-parameter spline Cox model giving a specified shape

Description

splineCox.reg1 estimates the parameters of a five-parameter spline Cox model based on a specified shape for the baseline hazard function. The function calculates the estimates for the model parameters (beta) and the baseline hazard scale parameter (gamma), using non-linear optimization.

Usage

splineCox.reg1(
  t.event,
  event,
  Z,
  xi1 = min(t.event),
  xi3 = max(t.event),
  model = "constant",
  p0 = rep(0, 1 + ncol(as.matrix(Z)))
)

Arguments

t.event

a vector for time-to-event

event

a vector for event indicator (=1 event; =0 censoring)

Z

a matrix for covariates; nrow(Z)=sample size, ncol(Z)=the number of covariates

xi1

lower bound for the hazard function; the default is min(t.event)

xi3

upper bound for the hazard function; the default is max(t.event)

model

A character string specifying the shape of the baseline hazard function. Available options include: "increase", "constant", "decrease", "unimodal1", "unimodal2", "unimodal3", "bathtub1", "bathtub2", "bathtub3". Default is "constant"

p0

Initial values to maximize the likelihood (1 + p parameters; baseline hazard scale parameter and p regression coefficients)

Value

A list containing the following components:

model

A character string indicating the shape of the baseline hazard function used.

parameter

A numeric vector of the parameters defining the baseline hazard shape.

beta

A named vector with the estimates, standard errors, and 95% confidence intervals for the regression coefficients

gamma

A named vector with the estimate, standard error, and 95% confidence interval for the baseline hazard parameter

loglik

A named vector containing the log-likelihood (LogLikelihood), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC)

Examples

# Example data
library(joint.Cox)
data(dataOvarian)
t.event = dataOvarian$t.event
event = dataOvarian$event
Z = dataOvarian$CXCL12

reg1 <- splineCox.reg1(t.event, event, Z, model = "constant")
print(reg1)

Fitting the five-parameter spline Cox model with a specified shape, selecting the best fit

Description

splineCox.reg2 estimates the parameters of a five-parameter spline Cox model for multiple specified shapes and selects the best fitting model based on the minimization of the log-likelihood function. The function calculates the estimates for the model parameters (beta) and the baseline hazard scale parameter (gamma), using non-linear optimization.

Usage

splineCox.reg2(
  t.event,
  event,
  Z,
  xi1 = min(t.event),
  xi3 = max(t.event),
  model = names(shape.list),
  p0 = rep(0, 1 + ncol(as.matrix(Z)))
)

Arguments

t.event

a vector for time-to-event

event

a vector for event indicator (=1 event; =0 censoring)

Z

a matrix for covariates; nrow(Z)=sample size, ncol(Z)=the number of covariates

xi1

lower bound for the hazard function; the default is min(t.event)

xi3

upper bound for the hazard function; the default is max(t.event)

model

A character vector specifying which model shapes to consider for the baseline hazard. Available options are: "increase", "constant", "decrease", "unimodal1", "unimodal2", "unimodal3", "bathtub1", "bathtub2", "bathtub3". Default is names(shape.list) which includes all available models.

p0

Initial values to maximize the likelihood (1 + p parameters; baseline hazard scale parameter and p regression coefficients)

Value

A list containing the following components:

model

A character string indicating the shape of the baseline hazard function used.

parameter

A numeric vector of the parameters defining the baseline hazard shape.

beta

A named vector with the estimates, standard errors, and 95% confidence intervals for the regression coefficients

gamma

A named vector with the estimate, standard error, and 95% confidence interval for the baseline hazard parameter

loglik

A named vector containing the log-likelihood (LogLikelihood), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) for the best-fitting model

other_models

A data frame containing the log-likelihood (LogLikelihood) for all other evaluated models, with model names as row names.

Examples

# Example data
library(joint.Cox)
data(dataOvarian)
t.event = dataOvarian$t.event
event = dataOvarian$event
Z = dataOvarian$CXCL12

M = c("constant", "increase", "decrease")
reg2 <- splineCox.reg2(t.event, event, Z, model = M)
print(reg2)